QWERTY

From Smithsonian Magazine (from 2013): an exploration of the idea that the standard North American keyboard layout was deliberately designed to be inefficient. Jared Diamond mentions this in Guns, Germs, and Steel (1997):

Unbelievable as it may now sound, that keyboard layout was designed in 1873 as a feat of anti-engineering. It employs a whole series of perverse tricks designed to force typists to type as slowly as possible, such as scattering the commonest letters over all keyboard rows and concentrating them on the left side (where right-handed people have to use their weaker hand). The reason behind all of those seemingly counterproductive features is that the typewriters of 1873 jammed if adjacent keys were struck in quick succession, so that manufacturers had to slow down typists. When improvements in typewriters eliminated the problem of jamming, trials in 1932 with an efficiently laid-out keyboard showed that it would let us double our typing speed and reduce our typing effort by 95 percent. But QWERTY keyboards were solidly entrenched by then. The vested interests of hundreds of millions of QWERTY typists, typing teachers, typewriter and computer salespeople, and manufacturers have crushed all moves toward keyboard efficiency for over 60 years.”

However, Jimmy Stamp relates that:

While it can’t be argued that deal with Remington helped popularize the QWERTY system, its development as a response to mechanical error, has been questioned by Kyoto University Researchers Koichi Yasuoka and Motoko Yasuoka. In a 2011 paper, the researchers tracked the evolution of the typewriter keyboard alongside a record of its early professional users. They conclude that the mechanics of the typewriter did not influence the keyboard design. Rather, the QWERTY system emerged as a result of how the first typewriters were being used. Early adopters and beta-testers included telegraph operators who needed to quickly transcribe messages. However, the operators found the alphabetical arrangement to be confusing and inefficient for translating morse code. The Kyoto paper suggests that the typewriter keyboard evolved over several years as a direct result of input provided by these telegraph operators. For example;

“The code represents Z as ‘· · · ·’ which is often confused with the digram SE, more frequently-used than Z. Sometimes Morse receivers in United States cannot determine whether Z or SE is applicable, especially in the first letter(s) of a word, before they receive following letters. Thus S ought to be placed near by both Z and E on the keyboard for Morse receivers to type them quickly (by the same reason C ought to be placed near by IE. But, in fact, C was more often confused with S).

In this scenario, the typist came before the keyboard. The Kyoto paper also cites the Morse lineage to further debunk the theory that Sholes wanted to protect his machine from jamming by rearranged the keys with the specific intent to slow down typists:

“The speed of Morse receiver should be equal to the Morse sender, of course. If Sholes really arranged the keyboard to slow down the operator, the operator became unable to catch up the Morse sender. We don’t believe that Sholes had such a nonsense intention during his development of Type-Writer.”

Interesting, if true. But it still might be good to promote the more efficient Dvorak layout for beginning typists. I see that I can select it in the System Preferences for this computer.

Leave a Reply

Your email address will not be published. Required fields are marked *